Перевод: с английского на все языки

со всех языков на английский

University Of Engineering And Technology

  • 1 UET

    1) Компьютерная техника: user earth terminal
    2) Военный термин: Unit Execution Time, Universal Engineer Tractor
    3) Техника: unattended Earth terminal
    4) Сокращение: Universal Engineer Tractor (USA)
    7) Аэропорты: Quetta, Pakistan

    Универсальный англо-русский словарь > UET

  • 2 Burks, Arthur Walter

    [br]
    b. 13 October 1915 Duluth, Minnesota, USA
    [br]
    American engineer involved in the development of the ENIAC and Whirlwind computers.
    [br]
    After obtaining his AB degree from De Pere University, Wisconsin (1937), and his AM and PhD from the University of Michigan (1938 and 1941, respectively), Burks carried out research at the Moore School of Engineering, University of Pennsylvania, during the Second World War, and at the same time taught philosophy in another department. There, with Herman Goldstine, he was involved in the construction of ENIAC (the Electronic Numerical Integrator and Computer).
    In 1946 he took a post as Assistant Professor of Engineering at Michigan University, and subsequently became Associate Professor (1948) and Full Professor (1954). Between 1946 and 1948 he was also associated with the computer activities of John von Neumann at the Institute of Advanced Studies, Princeton, and was involved in the development of the Whirlwind I computer (the first stored-program computer) by Jay Forrester at the Massachusetts Institute of Technology. From 1948 until 1954 he was a consultant for the Burroughs Corporation and also contributed to the Oak Ridge computer ORACLE. He was Chairman of the Michigan University Department of Communications Science in 1967–71 and at various times was Visiting Professor at Harvard University and the universities of Illinois and Stanford. In 1975 he became Editor of the Journal of Computer and System Sciences.
    [br]
    Bibliography
    1946. "Super electronic computing machine", Electronics Industry 62.
    1947. "Electronic computing circuits of the ENIAC", Proceedings of the Institute of Radio Engineers 35:756.
    1980, "From ENIAC to the stored program computer. Two revolutions in computing", in N.Metropolis, J.Hewlett \& G.-C.Rota (eds), A History of Computing in the 20th Century, London: Academic Press.
    Further Reading
    J.W.Corlada, 1987, Historical Dictionary of Data Processing (provides further details of Burk's career).
    KF

    Biographical history of technology > Burks, Arthur Walter

  • 3 Gabor, Dennis (Dénes)

    [br]
    b. 5 June 1900 Budapest, Hungary
    d. 9 February 1979 London, England
    [br]
    Hungarian (naturalized British) physicist, inventor of holography.
    [br]
    Gabor became interested in physics at an early age. Called up for military service in 1918, he was soon released when the First World War came to an end. He then began a mechanical engineering course at the Budapest Technical University, but a further order to register for military service prompted him to flee in 1920 to Germany, where he completed his studies at Berlin Technical University. He was awarded a Diploma in Engineering in 1924 and a Doctorate in Electrical Engineering in 1927. He then went on to work in the physics laboratory of Siemens \& Halske. He returned to Hungary in 1933 and developed a new kind of fluorescent lamp called the plasma lamp. Failing to find a market for this device, Gabor made the decision to abandon his homeland and emigrate to England. There he joined British Thompson-Houston (BTH) in 1934 and married a colleague from the company in 1936. Gabor was also unsuccessful in his attempts to develop the plasma lamp in England, and by 1937 he had begun to work in the field of electron optics. His work was interrupted by the outbreak of war in 1939, although as he was not yet a British subject he was barred from making any significant contribution to the British war effort. It was only when the war was near its end that he was able to return to electron optics and begin the work that led to the invention of holography. The theory was developed during 1947 and 1948; Gabor went on to demonstrate that the theories worked, although it was not until the invention of the laser in 1960 that the full potential of his invention could be appreciated. He coined the term "hologram" from the Greek holos, meaning complete, and gram, meaning written. The three-dimensional images have since found many applications in various fields, including map making, medical imaging, computing, information technology, art and advertising. Gabor left BTH to become an associate professor at the Imperial College of Science and Technology in 1949, a position he held until his retirement in 1967. In 1971 he was awarded the Nobel Prize for Physics for his work on holography.
    [br]
    Principal Honours and Distinctions
    Royal Society Rumford Medal 1968. Franklin Institute Michelson Medal 1968. CBE 1970. Nobel Prize for Physics 1971.
    Bibliography
    1948. "A new microscopic principle", Nature 161:777 (Gabor's earliest publication on holography).
    1949. "Microscopy by reconstructed wavefronts", Proceedings of the Royal Society A197: 454–87.
    1951, "Microscopy by reconstructed wavefronts II", Proc. Phys. Soc. B, 64:449–69. 1966, "Holography or the “Whole Picture”", New Scientist 29:74–8 (an interesting account written after laser beams were used to produce optical holograms).
    Further Reading
    T.E.Allibone, 1980, contribution to Biographical Memoirs of Fellows of the Royal Society 26: 107–47 (a full account of Gabor's life and work).
    JW

    Biographical history of technology > Gabor, Dennis (Dénes)

  • 4 Williamson, David Theodore Nelson

    [br]
    b. 15 February 1923 Edinburgh, Scotland
    d. 1992 Italy
    [br]
    Scottish engineer, inventor of the Williamson Amplifier and computer-controlled machine tools.
    [br]
    D.T.N.Williamson was educated at George Heriot's School, Edinburgh, and studied mechanical engineering at the University of Edinburgh and electrical engineering at Heriot-Watt College (now Heriot-Watt University), Edinburgh. He joined the MO Valve Company in London in 1943 and worked in his spare time on improving the sound reproduction for gramophones, and in 1946 invented the "Williamson Amplifier".
    That same year Williamson returned to Edinburgh as a development engineer with Ferranti Ltd, where he was employed in developing computer-controlled machining systems. In 1961 he was appointed Director of Research and Development at Molins Ltd, where he continued work on computer-controlled machine tools. He invented the Molins System 24, which employed a number of machine tools, all under computer control, and is generally acknowledged as a significant step in the development of manufacturing systems. In 1974 he joined Rank Xerox and became Director of Research before taking early retirement to live in Italy. Between 1954 and 1979 he served on numerous committees relating to computer-aided design, manufacturing technology and mechanical engineering in general.
    [br]
    Principal Honours and Distinctions
    FRS 1968.
    Bibliography
    Williamson was author of several papers and articles, and contributed to the Electronic
    Engineers' Reference Book (1959), Progress in Automation (1960) and the Numerical Control Handbook (1968).
    RTS

    Biographical history of technology > Williamson, David Theodore Nelson

  • 5 Kao, Charles Kuen

    [br]
    b. 4 November 1933 Shanghai, China
    [br]
    Chinese electrical engineer whose work on optical fibres did much to make optical communications a practical reality.
    [br]
    After the Second World War, Kao moved with his family to Hong Kong, where he went to St Joseph's College. To further his education he then moved to England, taking his "A" Levels at Woolwich Polytechnic. In 1957 he gained a BSc in electrical engineering and then joined Standard Telephones and Cables Laboratory (STL) at Harlow. Following the discovery by others in 1960 of the semiconductor laser, from 1963 Kao worked on the problems of optical communications, in particular that of achieving attenuation in optical cables low enough to make this potentially very high channel capacity form of communication a practical proposition; this problem was solved by suitable cladding of the fibres. In the process he obtained his PhD from University College, London, in 1965. From 1970 until 1974, whilst on leave from STL, he was Professor of Electronics and Department Chairman at the Chinese University of Hong Kong, then in 1982–7 he was Chief Scientist and Director of Engineering with the parent company ITT in the USA. Since 1988 he has been Vice-Chancellor of Hong Kong University.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1977. Institute of Electrical and Electronic Engineers Morris N.Liebmann Memorial Prize 1978; L.M.Ericsson Prize 1979. Institution of Electrical Engineers A.G.Bell Medal 1985; Faraday Medal 1989. American Physical Society International Prize for New Materials 1989.
    Bibliography
    1966, with G.A.Hockham, "Dielectric fibre surface waveguides for optical frequencies", Proceedings of the Institution of Electrical Engineers 113:1,151 (describes the major step in optical-fibre development).
    1982, Optical Fibre Systems. Technology, Design \& Application, New York: McGraw- Hill.
    1988, Optical Fibre, London: Peter Peregrinus.
    Further Reading
    W.B.Jones, 1988, Introduction to Optical Fibre Communications: R\&W Holt.
    KF

    Biographical history of technology > Kao, Charles Kuen

  • 6 Meek, Marshall

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 April 1925 Auchtermuchty, Fife, Scotland
    [br]
    Scottish naval architect and leading twentieth-century exponent of advanced maritime technology.
    [br]
    After early education at Cupar in Fife, Meek commenced training as a naval architect, taking the then popular sandwich apprenticeship of alternate half years at the University of Glasgow (with a Caird Scholarship) and at a shipyard, in his case the Caledon of Dundee. On leaving Dundee he worked for five years with the British Ship Research Association before joining Alfred Holt \& Co., owners of the Blue Funnel Line. During his twenty-five years at Liverpool, he rose to Chief Naval Architect and Director and was responsible for bringing the cargo-liner concept to its ultimate in design. When the company had become Ocean Fleets, it joined with other British shipowners and looked to Meek for the first purpose-built containership fleet in the world. This required new ship designs, massive worldwide investment in port facilities and marketing to win public acceptance of freight containers, thereby revolutionizing dry-cargo shipping. Under the houseflag of OCL (now POCL), this pioneer service set the highest standards of service and safety and continues to operate on almost every ocean.
    In 1979 Meek returned to the shipbuilding industry when he became Head of Technology at British Shipbuilders. Closely involved in contemporary problems of fuel economy and reduced staffing, he held the post for five years before his appointment as Managing Director of the National Maritime Institute. He was deeply involved in the merger with the British Ship Research Association to form British Maritime Technology (BMT), an organization of which he became Deputy Chairman.
    Marshall Meek has held many public offices, and is one of the few to have been President of two of the United Kingdom's maritime institutions. He has contributed over forty papers to learned societies, has acted as Visiting Professor to Strathclyde University and University College London, and serves on advisory committees to the Ministry of Defence, the Department of Transport and Lloyd's Register of Shipping. While in Liverpool he served as a Justice of the Peace.
    [br]
    Principal Honours and Distinctions
    CBE 1989. Fellow of the Royal Academy of Engineering 1990. President, Royal Institution of Naval Architects 1990–3; North East Coast Institution of Engineers and Shipbuilders 1984–6. Royal Designer for Industry (RDI) 1986. Royal Institution of Naval Architects Silver Medal (on two occasions).
    Bibliography
    1970, "The first OCL containerships", Transactions of the Royal Institution of Naval Architects.
    FMW

    Biographical history of technology > Meek, Marshall

  • 7 Zworykin, Vladimir Kosma

    [br]
    b. 30 July 1889 Mourum (near Moscow), Russia
    d. 29 July 1982 New York City, New York, USA
    [br]
    Russian (naturalized American 1924) television pioneer who invented the iconoscope and kinescope television camera and display tubes.
    [br]
    Zworykin studied engineering at the Institute of Technology in St Petersburg under Boris Rosing, assisting the latter with his early experiments with television. After graduating in 1912, he spent a time doing X-ray research at the Collège de France in Paris before returning to join the Russian Marconi Company, initially in St Petersburg and then in Moscow. On the outbreak of war in 1917, he joined the Russian Army Signal Corps, but when the war ended in the chaos of the Revolution he set off on his travels, ending up in the USA, where he joined the Westinghouse Corporation. There, in 1923, he filed the first of many patents for a complete system of electronic television, including one for an all-electronic scanning pick-up tube that he called the iconoscope. In 1924 he became a US citizen and invented the kinescope, a hard-vacuum cathode ray tube (CRT) for the display of television pictures, and the following year he patented a camera tube with a mosaic of photoelectric elements and gave a demonstration of still-picture TV. In 1926 he was awarded a PhD by the University of Pittsburgh and in 1928 he was granted a patent for a colour TV system.
    In 1929 he embarked on a tour of Europe to study TV developments; on his return he joined the Radio Corporation of America (RCA) as Director of the Electronics Research Group, first at Camden and then Princeton, New Jersey. Securing a budget to develop an improved CRT picture tube, he soon produced a kinescope with a hard vacuum, an indirectly heated cathode, a signal-modulation grid and electrostatic focusing. In 1933 an improved iconoscope camera tube was produced, and under his direction RCA went on to produce other improved types of camera tube, including the image iconoscope, the orthicon and image orthicon and the vidicon. The secondary-emission effect used in many of these tubes was also used in a scintillation radiation counter. In 1941 he was responsible for the development of the first industrial electron microscope, but for most of the Second World War he directed work concerned with radar, aircraft fire-control and TV-guided missiles.
    After the war he worked for a time on high-speed memories and medical electronics, becoming Vice-President and Technical Consultant in 1947. He "retired" from RCA and was made an honorary vice-president in 1954, but he retained an office and continued to work there almost up until his death; he also served as Director of the Rockefeller Institute for Medical Research from 1954 until 1962.
    [br]
    Principal Honours and Distinctions
    Zworykin received some twenty-seven awards and honours for his contributions to television engineering and medical electronics, including the Institution of Electrical Engineers Faraday Medal 1965; US Medal of Science 1966; and the US National Hall of Fame 1977.
    Bibliography
    29 December 1923, US patent no. 2,141, 059 (the original iconoscope patent; finally granted in December 1938!).
    13 July 1925, US patent no. 1,691, 324 (colour television system).
    1930, with D.E.Wilson, Photocells and Their Applications, New York: Wiley. 1934, "The iconoscope. A modern version of the electric eye". Proceedings of the
    Institute of Radio Engineers 22:16.
    1946, Electron Optics and the Electron Microscope.
    1940, with G.A.Morton, Television; revised 1954.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Zworykin, Vladimir Kosma

  • 8 Williams, Sir Frederic Calland

    [br]
    b. 26 June 1911 Stockport, Cheshire, England
    d. 11 August 1977 Prestbury, Cheshire, England
    [br]
    English electrical engineer who invented the Williams storage cathode ray tube, which was extensively used worldwide as a data memory in the first digital computers.
    [br]
    Following education at Stockport Grammar School, Williams entered Manchester University in 1929, gaining his BSc in 1932 and MSc in 1933. After a short time as a college apprentice with Metropolitan Vickers, he went to Magdalen College, Oxford, to study for a DPhil, which he was awarded in 1936. He returned to Manchester University that year as an assistant lecturer, gaining his DSc in 1939. Following the outbreak of the Second World War he worked for the Scientific Civil Service, initially at the Bawdsey Research Station and then at the Telecommunications Research Establishment at Malvern, Worcestershire. There he was involved in research on non-incandescent amplifiers and diode rectifiers and the development of the first practical radar system capable of identifying friendly aircraft. Later in the war, he devised an automatic radar system suitable for use by fighter aircraft.
    After the war he resumed his academic career at Manchester, becoming Professor of Electrical Engineering and Director of the University Electrotechnical Laboratory in 1946. In the same year he succeeded in developing a data-memory device based on the cathode ray tube, in which the information was stored and read by electron-beam scanning of a charge-retaining target. The Williams storage tube, as it became known, not only found obvious later use as a means of storing single-frame, still television images but proved to be a vital component of the pioneering Manchester University MkI digital computer. Because it enabled both data and program instructions to be stored in the computer, it was soon used worldwide in the development of the early stored-program computers.
    [br]
    Principal Honours and Distinctions
    Knighted 1976. OBE 1945. CBE 1961. FRS 1950. Hon. DSc Durham 1964, Sussex 1971, Wales 1971. First Royal Society of Arts Benjamin Franklin Medal 1957. City of Philadelphia John Scott Award 1960. Royal Society Hughes Medal 1963. Institution of Electrical Engineers Faraday Medal 1972. Institute of Electrical and Electronics Engineers Pioneer Award 1973.
    Bibliography
    Williams contributed papers to many scientific journals, including Proceedings of the Royal Society, Proceedings of the Cambridge Philosophical Society, Journal of the Institution of Electrical Engineers, Proceedings of the Institution of Mechanical Engineers, Wireless Engineer, Post Office Electrical Engineers' Journal. Note especially: 1948, with J.Kilburn, "Electronic digital computers", Nature 162:487; 1949, with J.Kilburn, "A storage system for use with binary digital computing machines", Proceedings of the Institution of Electrical Engineers 96:81; 1975, "Early computers at Manchester University", Radio \& Electronic Engineer 45:327. Williams also collaborated in the writing of vols 19 and 20 of the MIT Radiation
    Laboratory Series.
    Further Reading
    B.Randell, 1973, The Origins of Digital Computers, Berlin: Springer-Verlag. M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall. See also: Stibitz, George R.; Strachey, Christopher.
    KF

    Biographical history of technology > Williams, Sir Frederic Calland

  • 9 Bode, Hendrik Wade

    [br]
    b. 24 December 1905 Madison, Wisconsin, USA
    d. 21 June 1982 Cambridge, Massachusetts, USA
    [br]
    American engineer who developed an extensive theoretical understanding of the behaviour of electronic circuits.
    [br]
    Bode received his bachelor's and master's degrees from Ohio State University in 1924 and 1926, respectively, and his PhD from Columbia University, New York, in 1935. In 1926 he joined the Bell Telephone Laboratories, where he made many theoretical contributions to the understanding of the behaviour of electronic circuits and, in particular, in conjunction with Harry Nyquist, of the conditions under which amplifier circuits become unstable.
    During the Second World War he worked on the design of gun control systems and afterwards was a member of a team that worked with Douglas Aircraft to develop the Nike anti-aircraft missile. A member of the Bell Laboratories Mathematical Research Group from 1929, he became its Director in 1952, and then Director of Physical Sciences. Finally he became Vice-President of the Laboratories, with responsibility for systems engineering, and a director of Bellcomm, a Bell company involved in the Moon-landing programme. When he retired from Bell in 1967, he became Professor of Systems Engineering at Harvard University.
    [br]
    Principal Honours and Distinctions
    Presidential Certificate of Merit 1946. Institute of Electrical and Electronics Engineers Edison Medal 1969.
    Bibliography
    1940, "Relation between attenuation and phase in feedback amplifier design", Bell System Technical Journal 19:421.
    1945, Network Analysis and Feedback Amplifier Design, New York: Van Nostrand.
    1950, with C.E.Shannon, "A simplified derivation of linear least squares smoothing and prediction theory", Proceedings of the Institute of Radio Engineers 38:417.
    1961, "Feedback. The history of an idea", Proceedings of the Symposium on Active Networks and Feedback Systems, Brooklyn Polytechnic.
    1971, Synergy: Technical Integration and Technical Innovation in the Bell System Bell Laboratories, Bell Telephone Laboratories (provides background on his activities at Bell).
    Further Reading
    P.C.Mahon, 1975, Mission Communications, Bell Telephone Laboratories. See also Black, Harold Stephen; Shannon, Claude Elwood.
    KF

    Biographical history of technology > Bode, Hendrik Wade

  • 10 Guericke, Otto von

    [br]
    b. 20 November 1602 Magdeburg, Saxony, Germany
    d. 11 May 1686 Hamburg, Germany
    [br]
    German engineer and physicist, inventor of the air pump and investigator of the properties of a vacuum.
    [br]
    Guericke was born into a patrician family in Magdeburg. He was educated at the University of Leipzig in 1617–20 and at the University of Helmstedt in 1620. He then spent two years studying law at Jena, and in 1622 went to Leiden to study law, mathematics, engineering and especially fortification. He spent most of his life in politics, for he was elected an alderman of Magdeburg in 1626. After the destruction of Magdeburg in 1631, he worked in Brunswick and Erfurt as an engineer for the Swedish government, and then in 1635 for the Electorate of Saxony. He was Mayor of Magdeburg for thirty years, between 1646 and 1676. He was ennobled in 1666 and retired from public office in 168land went to Hamburg. It was through his attendances at international congresses and at princely courts that he took part in the exchange of scientific ideas.
    From his student days he was concerned with the definition of space and posed three questions: can empty space exist or is space always filled? How can heavenly bodies affect each other across space and how are they moved? Is space, and so also the heavenly bodies, bounded or unbounded? In c. 1647 Guericke made a suction pump for air and tried to exhaust a beer barrel, but he could not stop the leaks. He then tried a copper sphere, which imploded. He developed a series of spectacular demonstrations with his air pump. In 1654 at Rattisbon he used a vertical cylinder with a well-fitting piston connected over pulleys by a rope to fifty men, who could not stop the piston descending when the cylinder was exhausted. More famous were his copper hemispheres which, when exhausted, could not be drawn apart by two teams of eight horses. They were first demonstrated at Magdeburg in 1657 and at the court in Berlin in 1663. Through these experiments he discovered the elasticity of air and began to investigate its density at different heights. He heard of the work of Torricelli in 1653 and by 1660 had succeeded in making barometric forecasts. He published his famous work New Experiments Concerning Empty Space in 1672. Between 1660 and 1663 Guericke constructed a large ball of sulphur that could be rotated on a spindle. He found that, when he pressed his hand on it and it was rotated, it became strongly electrified; he thus unintentionally became the inventor of the first machine to generate static electricity. He attempted to reach a complete physical explanation of the world and the heavens with magnetism as a primary force and evolved an explanation for the rotation of the heavenly bodies.
    [br]
    Bibliography
    1672, Experimenta nova (ut vocantur) Magdeburgica de vacuo spatio (New Experiments Concerning Empty Space).
    Further Reading
    F.W.Hoffmann, 1874, Otto von Guericke (a full biography).
    T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black (contains a short account of his life).
    Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    Dictionary of Scientific Biography, Vol. V, New York.
    C.Singer (ed.), 1957, A History of Technology, Vols. III and IV, Oxford University Press (includes references to Guericke's inventions).
    RLH

    Biographical history of technology > Guericke, Otto von

  • 11 Bardeen, John

    [br]
    b. 23 May 1908 Madison, Wisconsin, USA
    d. 30 January 1991 Boston, Massachusetts, USA
    [br]
    American physicist, the first to win the Nobel Prize for Physics twice.
    [br]
    Born the son of a professor of anatomy, he studied electrical engineering at the University of Wisconsin. He then worked for three years as a geophysicist at the Gulf Research Laboratories before taking a PhD in mathematical physics at Princeton, where he was a graduate student. For some time he held appointments at the University of Minnesota and at Harvard, and during the Second World War he joined the US Naval Ordnance Laboratory. In 1945 he joined the Bell Telephone Laboratories to head a new department to work on solid-state devices. While there, he and W.H. Brattain in 1948 published a paper that introduced the transistor. For this he, Brattain and Shockley won the Nobel Prize for Physics in 1956. In 1951 he moved to the University of Illinois as Professor of Physics and Electrical Engineering. There he worked on superconductivity, a phenomenon described in 1911 by Kamerling-Onnes. Bardeen worked with L.N. Cooper and J.A.Schrieffer, and in 1972 they were awarded the Nobel Prize for Physics for the "BCS Theory", which suggested that, under certain circumstances at very low temperatures, electrons can form bound pairs.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics (jointly with Brattain and Shockley) 1956, (jointly with Cooper and Schrieffer) 1972.
    Further Reading
    Isaacs and E.Martin (eds), 1985, Longmans Dictionary of 20th Century Biography.
    IMcN

    Biographical history of technology > Bardeen, John

  • 12 Bell, Revd Patrick

    [br]
    b. 1799 Auchterhouse, Scotland
    d. 22 April 1869 Carmyllie, Scotland
    [br]
    Scottish inventor of the first successful reaping machine.
    [br]
    The son of a Forfarshire tenant farmer, Patrick Bell obtained an MA from the University of St Andrews. His early association with farming kindled an interest in engineering and mechanics and he was to maintain a workshop not only on his father's farm, but also, in later life, at the parsonage at Carmyllie.
    He was still studying divinity when he invented his reaping machine. Using garden shears as the basis of his design, he built a model in 1827 and a full-scale prototype the following year. Not wishing the machine to be seen during his early experiments, he and his brother planted a sheaf of oats in soil laid out in a shed, and first tried the machine on this. It cut well enough but left the straw in a mess behind it. A canvas belt system was devised and another secret trial in the barn was followed by a night excursion into a field, where corn was successfully harvested.
    Two machines were at work during 1828, apparently achieving a harvest rate of one acre per hour. In 1832 there were ten machines at work, and at least another four had been sent to the United States by this time. Despite their success Bell did not patent his design, feeling that the idea should be given free to the world. In later years he was to regret the decision, feeling that the many badly-made imitations resulted in its poor reputation and prevented its adoption.
    Bell's calling took precedence over his inventive interests and after qualifying he went to Canada in 1833, spending four years in Fergus, Ontario. He later returned to Scotland and be-came the minister at Carmyllie, with a living of £150 per annum.
    [br]
    Principal Honours and Distinctions
    Late in the day he was honoured for his part in the development of the reaping machine. He received an honorary degree from the University of St Andrews and in 1868 a testimonial and £1,000 raised by public subscription by the Highland and Agricultural Society of Scotland.
    Bibliography
    1854, Journal of Agriculture (perhaps stung by other claims, Bell wrote his own account).
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of the development of harvesting machinery).
    L.J.Jones, 1979, History of Technology, pp. 101–48 (gives a critical assessment of the various claims regarding the originality of the invention).
    51–69 (provides a celebration of Bell's achievement on its centenary).
    AP

    Biographical history of technology > Bell, Revd Patrick

  • 13 Alexanderson, Ernst Frederik Werner

    [br]
    b. 25 January 1878 Uppsala, Sweden
    d. ? May 1975 Schenectady, New York, USA
    [br]
    Swedish-American electrical engineer and prolific radio and television inventor responsible for developing a high-frequency alternator for generating radio waves.
    [br]
    After education in Sweden at the High School and University of Lund and the Royal Institution of Technology in Stockholm, Alexanderson took a postgraduate course at the Berlin-Charlottenburg Engineering College. In 1901 he began work for the Swedish C \& C Electric Company, joining the General Electric Company, Schenectady, New York, the following year. There, in 1906, together with Fessenden, he developed a series of high-power, high-frequency alternators, which had a dramatic effect on radio communications and resulted in the first real radio broadcast. His early interest in television led to working demonstrations in his own home in 1925 and at the General Electric laboratories in 1927, and to the first public demonstration of large-screen (7 ft (2.13 m) diagonal) projection TV in 1930. Another invention of significance was the "amplidyne", a sensitive manufacturing-control system subsequently used during the Second World War for controlling anti-aircraft guns. He also contributed to developments in electric propulsion and radio aerials.
    He retired from General Electric in 1948, but continued television research as a consultant for the Radio Corporation of America (RCA), filing his 321st patent in 1955.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1919. President, IERE 1921. Edison Medal 1944.
    Bibliography
    Publications relating to his work in the early days of radio include: "Magnetic properties of iron at frequencies up to 200,000 cycles", Transactions of the American Institute of Electrical Engineers (1911) 30: 2,443.
    "Transatlantic radio communication", Transactions of the American Institute of Electrical
    Engineers (1919) 38:1,269.
    The amplidyne is described in E.Alexanderson, M.Edwards and K.Boura, 1940, "Dynamo-electric amplifier for power control", Transactions of the American
    Institution of Electrical Engineers 59:937.
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, Methuen (provides an account of Alexanderson's work on radio).
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press (provides further details of his contribution to the development of television).
    KF

    Biographical history of technology > Alexanderson, Ernst Frederik Werner

  • 14 Shannon, Claude Elwood

    [br]
    b. 30 April 1916 Gaylord, Michigan, USA
    [br]
    American mathematician, creator of information theory.
    [br]
    As a child, Shannon tinkered with radio kits and enjoyed solving puzzles, particularly crypto-graphic ones. He graduated from the University of Michigan in 1936 with a Bachelor of Science in mathematics and electrical engineering, and earned his Master's degree from the Massachusetts Institute of Technology (MIT) in 1937. His thesis on applying Boolean algebra to switching circuits has since been acclaimed as possibly the most significant this century. Shannon earned his PhD in mathematics from MIT in 1940 with a dissertation on the mathematics of genetic transmission.
    Shannon spent a year at the Institute for Advanced Study in Princeton, then in 1941 joined Bell Telephone Laboratories, where he began studying the relative efficiency of alternative transmission systems. Work on digital encryption systems during the Second World War led him to think that just as ciphers hide information from the enemy, "encoding" information could also protect it from noise. About 1948, he decided that the amount of information was best expressed quantitatively in a two-value number system, using only the digits 0 and 1. John Tukey, a Princeton colleague, named these units "binary digits" (or, for short, "bits"). Almost all digital computers and communications systems use such on-off, or two-state logic as their basis of operation.
    Also in the 1940s, building on the work of H. Nyquist and R.V.L. Hartley, Shannon proved that there was an upper limit to the amount of information that could be transmitted through a communications channel in a unit of time, which could be approached but never reached because real transmissions are subject to interference (noise). This was the beginning of information theory, which has been used by others in attempts to quantify many sciences and technologies, as well as subjects in the humanities, but with mixed results. Before 1970, when integrated circuits were developed, Shannon's theory was not the preferred circuit-and-transmission design tool it has since become.
    Shannon was also a pioneer in the field of artificial intelligence, claiming that computing machines could be used to manipulate symbols as well as do calculations. His 1953 paper on computers and automata proposed that digital computers were capable of tasks then thought exclusively the province of living organisms. In 1956 he left Bell Laboratories to join the MIT faculty as Professor of Communications Science.
    On the lighter side, Shannon has built many devices that play games, and in particular has made a scientific study of juggling.
    [br]
    Principal Honours and Distinctions
    National Medal of Science. Institute of Electrical and Electronics Engineers Medal of Honor, Kyoto Prize.
    Bibliography
    His seminal paper (on what has subsequently become known as information theory) was entitled "The mathematical theory of communications", first published in Bell System Technical Journal in 1948; it is also available in a monograph (written with Warren Weaver) published by the University of Illinois Press in 1949, and in Key Papers in the Development of Information Theory, ed. David Slepian, IEEE Press, 1974, 1988. For readers who want all of Shannon's works, see N.J.A.Sloane and A.D.Wyner, 1992, The
    Collected Papers of Claude E.Shannon.
    HO

    Biographical history of technology > Shannon, Claude Elwood

  • 15 Shockley, William Bradford

    [br]
    b. 13 February 1910 London, England
    d. 12 August 1989, Palo Alto, California, USA.
    [br]
    American physicist who developed the junction transistor from the point contact transistor and was joint winner (with John Bardeen and Walter H. Brattain) of the 1956 Nobel Prize for physics.
    [br]
    The son of a mining engineer, Shockley graduated from the California Institute of Technology in 1932 and in 1936 obtained his PhD at the Massachusetts Institute of Technology. In that year, he joined the staff of Bell Telephone Laboratories.
    Since the early days of radio, crystals of silicon or similar materials had been used to rectify alternating current supply until these were displaced by thermionic valves or tubes. Shockley, with Bardeen and Brattain, found that crystals of germanium containing traces of certain impurities formed far better rectifiers than crystals of the material in its pure form. The resulting device, the transistor, could also be used to amplify the current; its name is derived from its ability to transfer current across a resistor. The transistor, being so much smaller than the thermionic valve which it replaced, led to the miniaturization of electronic appliances. Another advantage was that a transistorized device needed no period of warming up, such as was necessary with a thermionic valve before it would operate. The dispersal of the heat generated by a multiplicity of thermionic valves such as were present in early computers was another problem obviated by the advent of the transistor.
    Shockley was responsible for much development in the field of semiconductors. He was Deputy Director of the Weapons Systems Evaluation Group of the US Department of Defense (1954–5), and in 1963 he was appointed the first Poniatoff Professor of Engineering Science at Stanford University, California. During the late 1960s Shockley became a controversial figure for expressing his unorthodox views on genetics, such as that black people were inherently less intelligent than white people, and that the population explosion spread "bad" genes at the expense of "good" genes; he supported the idea of a sperm bank from Nobel Prize winners, voluntary sterilization and the restriction of interracial marriages.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1956.
    Further Reading
    I.Asimov (ed.), 1982, Biographical Encyclopedia of Science and Technology, New York: Doubleday \& Co.
    IMcN

    Biographical history of technology > Shockley, William Bradford

  • 16 Polhem, Christopher

    [br]
    b. 18 December 1661 Tingstade, Gotland, Sweden d. 1751
    [br]
    Swedish engineer and inventor.
    [br]
    He was the eldest son of Wolf Christopher Polhamma, a merchant. The father died in 1669 and the son was sent by his stepfather to an uncle in Stockholm who found him a place in the Deutsche Rechenschule. After the death of his uncle, he was forced to find employment, which he did with the Biorenklou family near Uppsala where he eventually became a kind of estate bailiff. It was during this period that he started to work with a lathe, a forge and at carpentry, displaying great technical ability. He realized that without further education he had little chance of making anything of his life, and accordingly, in 1687, he registered at the University of Uppsala where he studied astronomy and mathematics, remaining there for three years. He also repaired two astronomical pendulum clocks as well as the decrepit medieval clock in the cathedral. After a year's work he had this clock running properly: this was his breakthrough. He was summoned to Stockholm where the King awarded him a salary of 500 dalers a year as an encouragement to further efforts. Around this time, one of increasing mechanization and when mining was Sweden's principal industry, Pohlem made a model of a hoist frame for mines and the Mines Authority encouraged him to develop his ideas. In 1693 Polhem completed the Blankstot hoist at the Stora Kopparberg mine, which attracted great interest on the European continent.
    From 1694 to 1696 Polhem toured factories, mills and mines abroad in Germany, Holland, England and France, studying machinery of all kinds and meeting many foreign engineers. In 1698 he was appointed Director of Mining Engineering in Sweden, and in 1700 he became Master of Construction in the Falu Mine. He installed the Karl XII hoist there, powered by moving beams from a distant water-wheel. His plan of 1697 for all the machinery at the Falu mine to be driven by three large and remote water-wheels was never completed.
    In 1707 he was invited by the Elector of Hanover to visit the mines in the Harz district, where he successfully explained many of his ideas which were adopted by the local engineers. In 1700, in conjunction with Gabriel Stierncrona, he founded the Stiersunds Bruk at Husby in Southern Dalarna, a factory for the mass production of metal goods in iron, steel and bronze. Simple articles such as pans, trays, bowls, knives, scissors and mirrors were made there, together with the more sophisticated Polhem lock and the Stiersunds clock. Production was based on water power. Gear cutting for the clocks, shaping hammers for plates, file cutting and many other operations were all water powered, as was a roller mill for the sheet metal used in the factory. He also designed textile machinery such as stocking looms and spinning frames and machines for the manufacture of ribbons and other things.
    In many of his ideas Polhem was in advance of his time and Swedish country society was unable to absorb them. This was largely the reason for the Stiersund project being only a partial success. Polhem, too, was of a disputatious nature, self-opinionated almost to the point of conceit. He was a prolific writer, leaving over 20,000 pages of manuscript notes, drafts, essays on a wide range of subjects, which included building, brick-making, barrels, wheel-making, bell-casting, organ-building, methods of stopping a horse from bolting and a curious tap "to prevent serving maids from sneaking wine from the cask", the construction of ploughs and threshing machines. His major work, Kort Berattelse om de Fornamsta Mechaniska Inventioner (A Brief Account of the Most Famous Inventions), was printed in 1729 and is the main source of knowledge about his technological work. He is also known for his "mechanical alphabet", a collection of some eighty wooden models of mechanisms for educational purposes. It is in the National Museum of Science and Technology in Stockholm.
    [br]
    Bibliography
    1729, Kort Berattelse om de Fornamsta Mechaniska Inventioner (A Brief Account of the Most Famous Inventions).
    Further Reading
    1985, Christopher Polhem, 1661–1751, TheSwedish Daedalus' (catalogue of a travelling exhibition from the Swedish Institute in association with the National Museum of Science and Technology), Stockholm.
    IMcN

    Biographical history of technology > Polhem, Christopher

  • 17 Fessenden, Reginald Aubrey

    [br]
    b. 6 October 1866 East Bolton, Quebec, Canada
    d. 22 July 1932 Bermuda
    [br]
    Canadian radio pioneer who made the first known broadcast of speech and music.
    [br]
    After initial education at Trinity College School, Port Hope, Ontario, Fessenden studied at Bishops University, Lennoxville, Quebec. When he graduated in 1885, he became Principal of the Whitney Institute in Bermuda, but he left the following year to go to New York in pursuit of his scientific interests. There he met Edison and eventually became Chief Chemist at the latter's Laboratory in Orange, New Jersey. In 1890 he moved to the Westinghouse Electric and Manufacturing Company, and two years later he returned to an academic career as Professor of Electrical Engineering, initially at Purdue University, Lafayette, Indiana, and then at the Western University of Pennsylvania, where he worked on wireless communication. From 1900 to 1902 he carried out experiments in wireless telegraphy at the US Weather Bureau, filing several patents relating to wire and liquid thermal detectors, or barretters. Following this he set up the National Electric Signalling Company; under his direction, Alexanderson and other engineers at the General Electric Company developed a high-frequency alternator that enabled him to build the first radiotelephony transmitter at Brant Rock, Massachusetts. This made its initial broadcast of speech and music on 24 December 1906, received by ship's wireless operators several hundred miles away. Soon after this the transmitter was successfully used for two-way wireless telegraphy communication with Scotland. Following this landmark event, Fessenden produced numerous inventions, including a radio compass, an acoustic depth-finder and several submarine signalling devices, a turboelectric drive for battleships and, notably, in 1912 the heterodyne principle used in radio receivers to convert signals to a lower (intermediate) frequency.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Medal of Honour 1921.
    Bibliography
    US patents relating to barretters include nos. 706,740, 706,742 and 706,744 (wire, 1902) and 731,029 (liquid, 1903). His invention of the heterodyne was filed as US patent no. 1,050,441 (1913).
    Further Reading
    Helen M.Fessenden, 1940, Fessenden. Builder of Tomorrow. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. O.E.Dunlop, 1944, Radio's 100 Men of Science.
    KF

    Biographical history of technology > Fessenden, Reginald Aubrey

  • 18 Taylor, Albert Hoyt

    [br]
    b. 1 January 1874 Chicago, Illinois, USA
    d. 11 December 1961 Claremont, California, USA
    [br]
    American radio engineer whose work on radio-detection helped lay the foundations for radar.
    [br]
    Taylor gained his degree in engineering from Northwest University, Evanston, Illinois, then spent a time at the University of Gottingen. On his return to the USA he taught successively at Michigan State University, at Lansing, and at the universities of Wisconsin at Madison and North Dakota at Grand Forks. From 1923 until 1945 he supervised the Radio Division at the US Naval Research Laboratories. There he carried out studies of short-wave radio propagation and confirmed Heaviside's 1925 theory of the reflection characteristics of the ionosphere. In the 1920s and 1930s he investigated radio echoes, and in 1933, with L.C.Young and L.A.Hyland, he filed a patent for a system of radio-detection that contributed to the subsequent development of radar.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1927. President, Institute of Radio Engineers 1929. Institute of Electrical and Electronics Engineers Medal of Honour 1942.
    Bibliography
    1926, with E.O.Hulbert, "The propagation of radio waves over the earth", Physical Review 27:189.
    1936, "The measurement of RF power", Proceedings of the Institute of Radio Engineers 24: 1,342.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, London: Peter Peregrinus.
    KF

    Biographical history of technology > Taylor, Albert Hoyt

  • 19 Laithwaite, Eric Roberts

    [br]
    b. 14 June 1921 Atherton, Lancashire, England
    [br]
    English engineer, notable contributor to the development of linear electric motors.
    [br]
    Laithwaite's education at Kirkham Grammar School and Regent Street Polytechnic, London, was followed by service in the Royal Air Force. After entering Manchester University in 1946 and graduating in 1949, he joined the university staff and became Secretary to the Inaugural Conference of the Ferranti Mark I computer. In 1964 he moved to Imperial College of Science and Technology, London, and became Professor of Heavy Electrical Engineering. From 1967 to 1976 he also held the post of External Professor of Applied Electricity at the Royal Institution. Research into the use of linear induction motors as shuttle drives in weaving looms was followed by investigations into their application to conveyors in industrial processes and as high-speed propulsion units for railway vehicles. With considerable involvement in a tracked hovercraft project in the 1960s and 1970s, he proposed the concept of transverse flux and the magnetic river high-speed linear induction machine. Linear motors and electromagnetic levitation have been applied to high-speed propulsion in the United States, France and Japan.
    Laithwaite has written five books and over one hundred papers on the subjects of linear motors and electromagnetic levitation. Two series of Christmas lectures were presented by him at the Royal Institution.
    [br]
    Principal Honours and Distinctions
    Royal Society S.G.Brown Medal 1966. Institute of Electronic and Electrical Engineers Nikola Tesla Award 1986.
    Bibliography
    1970, Propulsion Without Wheels, London (discusses properties and applications of linear induction motors).
    1977 (ed.), Transport Without Wheels, London (describes the design and applications of linear electric motors).
    1987, A History of Linear Electric Motors, London (provides a general historical survey).
    Further Reading
    B.Bowers, 1982, A History of Electric Light and Power, London, pp. 261–4 (provides an account of early linear motors).
    M.Poloujadoff, 1980, The Theory of Linear Induction Motors, Oxford (for a comparison of analytical methods recommended by various investigators).
    GW

    Biographical history of technology > Laithwaite, Eric Roberts

  • 20 Ives, Herbert Eugene

    [br]
    b. 1882 USA
    d. 1953
    [br]
    American physicist find television pioneer.
    [br]
    Ives gained his PhD in physics from Johns Hopkins University, Baltimore, Maryland, and subsequently served in the US Signal Corps, eventually gaining experience in aerial photography. He then joined the Western Electric Engineering Department (later Bell Telephone Laboratories), c.1920 becoming leader of a group concerned with television-image transmission over telephone lines. In 1927, using a Nipkow disc, he demonstrated 50-line, 18 frames/sec pictures that could be displayed as either 2 in.×2 1/2 in. (5.1 cm×6.4 cm) images suitable for a "wirephone", or 2 ft ×2 1/2 ft (61 cm×76 cm) images for television viewing. Two years later, using a single-spiral disc and three separately modulated light sources, he was able to produce full-colour images.
    [br]
    Bibliography
    1915, "The transformation of colour mixture equations", Journal of the Franklin Institute 180:673.
    1923, "do—Pt II", Journal of the Franklin Institute 195–23.
    1925, "Telephone picture transmission", Transactions of the Society of Motion Picture and Television Engineers 23:82.
    1929, "Television in colour", Bell Laboratories Record 7:439.
    1930, with A.L.Johnsrul, "Television in colour by a beam-scanning method", Journal of the Optical Society of America 20:11.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Ives, Herbert Eugene

См. также в других словарях:

  • University of Engineering and Technology, Peshawar — University of Engineering Technology Established 1980 Type Public Academic staff 289 Students 3000+ …   Wikipedia

  • University of Engineering and Technology, Lahore — Infobox University name=University of Engineering and Technology, Lahore motto= Read in the name thy Lord who creates! established=1921 type=Public Vice Chancellor=Lt. Gen. (retd) Muhammad Akram Khan city=Lahore state=Punjab country=Pakistan… …   Wikipedia

  • University of Engineering and Technology (Peshawar) — Infobox University name = NWFP University of Engineering Technology nickname = UET Peshawar established = 1980 type = Public Vice Chancellor = Syed Imtiaz Hussain Gilani city = Peshawar state = NWFP country = Pakistan students = 3,083 faculty =… …   Wikipedia

  • University of Engineering and Technology, Taxila — Infobox University name=University of Engineering and Technology, Taxila University established=1979 type=Public Vice Chancellor=Dr. HabibUllah Jamal city=Taxila state=Punjab country=Pakistan students= 2700 undergrad= 2400 postgrad= 300 faculty=… …   Wikipedia

  • Bangladesh University of Engineering and Technology — বাংলাদেশ প্রকৌশল বিশ্ববিদ্যালয় Established 1876: Dhaka Survey School 1912: Ahsanullah School of Engineering 1947: Faculty of Engineering, University of Dhaka 1962: BUET …   Wikipedia

  • Sir Syed University of Engineering and Technology — Sir Syed University of Engineering Technology, commonly known as SSUET, is a private sector engineering university located in Karachi, Pakistan. SSUET was named after the 19th century Muslim education reformer Sir Syed Ahmad Khan. SSUET was… …   Wikipedia

  • NED University of Engineering and Technology — Nadirshaw Eduljee Dinshaw University of Engineering and Technology Established 1921 Type Public Chancellor Governo …   Wikipedia

  • Mehran University of Engineering and Technology — Mehran University of Engineering and Technology, Jamshoro مهراڻ يونيورسٽي آف انجنيئرڱ اينڊ ٽيڪنالاجي Motto Nurturing the Engineering Graduates with Deep Perception and Wide Perspective Established 1963 …   Wikipedia

  • Khulna University of Engineering and Technology — Infobox University name=Khulna University of Engineering Technology established=1969 image size=100px type=Public, Coeducational chancellor=Professor Dr Yazuddin Ahmed vice chancellor=Dr Professor Md. Nawsher Ali Moral city=Khulna… …   Wikipedia

  • Rajshahi University of Engineering and Technology — Infobox University 200px|Logo of the Bangladesh University of Engineering and Technology name=Rajshahi University of Engineering and Technology motto= Heaven s Light is Our Guide established=1962 type=Public chancellor=Honourable President of… …   Wikipedia

  • Balochistan University of Engineering and Technology, Khuzdar — Infobox University name=Balochistan University of Engineering and Technology, Khuzdar|motto= Kasbe Kamal Kun keh Aziz e Jahan Shavi established=1987 type=Public Vice Chancellor city=Khuzdar state=Balochistan country=Pakistan students= 1000… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»